
(revised 3/28/2011)

Detailed Nios II Exception Process

When an exception is triggered, the CPU does the following steps automatically:

1. Copy the contents of status to estatus to save pre-exception state
2. Clear (0) PIE bit of status to ensure further exceptions are now disabled
3. Modify r29 aka ea to hold the return address of the instruction immediately after

the one being interrupted
4. Start running the exception handler program at the predefined address

(0x00000020)

When the exception ends, the exception handler must use the special eret instruction to
automatically and properly end the exception process:

5. Copy estatus back to status to restore the pre-exception state
6. Return to running the regular program at the address stored in ea

Your Program

To use interrupts and exceptions, your program must include the following:

A. An exception handler
B. An interrupt service routine for each interrupt source you enable
C. A setup routine to initialize the entire interrupts subsystem

A) Your exception handler must:

1. Save registers on the stack
2. Determine the cause of the exception according to the priority order
3. For hardware interrupts, adjust the return address in ea by subtracting 4
4. Call the appropriate interrupt service routine or exception service routine

• Loop to call ISR associated for each hardware IRQ in ipending
5. Restore registers from the stack
6. Return to the main program using the instruction eret

B) Your interrupt service routine must:

1. Clear the cause of the exception or interrupt so it will not occur again (eg, tell the
device to stop sending the interrupt)

2. Do the appropriate action for the interrupt (eg, read the character received from
the serial port)

3. Change the state of the system (ie, modify memory to alter behaviour of system)
4. Return to the exception handler using ret

C) Your main program or setup routine must:

1. Place the exception handler in memory at address 0x00000020.
2. Enable the use of the stack
3. Specifically enable device to send interrupts (eg: ps2, timer)
4. Specifically enable CPU to receive interrupts from the device (ienable)
5. Enable CPU interrupts by setting PIE bit to 1 (i.e. set bit 0 in status to a 1)

(revised 3/28/2011)

.include "ubc-de1media-macros.s"

/***
 * RESET SECTION
 * The Nios II assembler/linker places this section at address 0x00000000.
 * It must be <= 8 real NiosII instructions. This is where the CPU starts
 * at "powerup" and on "reset".
 */
.section .reset, "ax"
 movia sp, STACK_END /* initialize stack */
 movia ra, _start
 ret /* jump to _start */

/***
 * EXCEPTIONS SECTION
 * The Nios II assembler/linker places this section at addresss 0x00000020.
 */
.section .exceptions, "ax"

exception_handler:
 addi sp, sp, -12 /* save used regs on stack */
 stw r8, 0(sp)
 stw r9, 4(sp)
 stw ra, 8(sp)

 /* Check if interrupts were enabled by examining the EPIE bit. */
 /* EPIE is bit0 of estatus, a copy of PIE before the exception */
 rdctl et, estatus
 andi et, et, 1
 beq et, r0, check_software_exceptions
 /* interrupts are enabled, check if any are pending */
 rdctl et, ipending
 beq et, r0, check_software_exceptions

check_hardware_interrupts:
 /* upon return, execute the interrupted instruction */
 subi ea, ea, 4
 /* should check interrupts one-at-a-time, from irq0 to irq31 */
 /* each time the ipending bit is set, we should call the proper ISR */
 /* since we are only expecting irq0, we will only check for it */
 andi et, et, 0x1
 beq et, r0, check_next_interrupt

 call timer_isr /* ISR uses r8, r9, and ‘call’ uses ra */

check_next_interrupt:
 /* no more interrupts to check */

check_software_exceptions:
 /* no software exceptions supported */
 /* they should be checked in priority order (trap, break, unimplemented) */

done_exceptions:
 ldw ra, 8(sp) /* restore used regs from stack */
 ldw r9, 4(sp)
 ldw r8, 0(sp)
 addi sp, sp, 12
 eret
/* Nios II exception priorities are defined as follows:
 * 1) hardware interrupt exceptions
 * a) irq 0 (highest interrupt priority)
 * b) irq 1, ..., irq30 (again, listed higher to lower priority)
 * c) irq 31 (lowest interrupt priority)
 * 2) software exceptions
 * a) trap exception
 * b) break exception
 * c) unimplemented instruction
 * We implement these priorities by checking the cause of the exception
 * in the same order in the exception handler above.
 */

Example: Count every 100ms on LEDG; no communication with main program.

(revised 3/28/2011)

/***
 * TEXT SECTION
 * The Nios II assembler/linker should put the .text section after the .exceptions.
 * You may need to configure the Altera Monitor Program to locate it at address 0x400.
 */

.text
.global _start

_start:
 movia r23, IOBASE
 movia sp, STACK_END /* make sure stack is initialized */

 movia r4, interrupt_counts
 stw r0, 0(r4)

 movia r4, 100*50000 /* # of timer cycles in 100ms */
 call setup_timer_interrupts
 call setup_cpu_interrupts

loop: ldwio r8, SWITCH(r23)
 stwio r8, LEDR(r23)
 br loop

timer_isr:
 /* every interval, increment 'interrupt_counts' and display on LEDG */
 /* clear source of interrupt by writing 0 to TO bit */
 stwio r0, TIMER_STATUS(r23)

 /* process the interrupt, change state of system */
 movia r9, interrupt_counts
 ldw r8, 0(r9)
 addi r8, r8, 1
 stw r8, 0(r9)
 stwio r8, LEDG(r23) /* show count on LEDG */

 /* return from ISR */
 ret

setup_timer_interrupts:
 /* set up timer to send interrupts */
 /* parameter r4 holds the # cycles for the timer interval */

 /* set the timer period */
 andi r2, r4, 0xffff /* extract low halfword */
 stwio r2, TIMER_START_LOW(r23)
 srli r2, r4, 16 /* extract high halfword */
 stwio r2, TIMER_START_HIGH(r23)

 /* start timer (bit2), count continuously (bit1), enable irq (bit0) */
 movi r2, 0b0111
 stwio r2, TIMER_CONTROL(r23)

 ret

setup_cpu_interrupts:
 /* set up CPU to receive interrupts from timer */
 movi r2, 0x01 /* bit0 = irq0 = countdown timer device */
 wrctl ienable, r2
 movi r2, 1 /* bit0 = PIE */
 wrctl status, r2
 ret /* first instr. that may be interrupted */

.data
interrupt_counts:
.word 0

.end

(revised 3/28/2011)

Communication between ISR and Regular Program

One of the most difficult things to get correct is the communication between your ISR
and the regular part of your program. There are two basic methods of communicating:

1) By modifying specific registers
2) By modifying memory

Using registers is easiest, but it is really a shortcut and there are still some hidden
difficulties. Using memory is the proper method, and the only way available from C
language. However, it was already discussed earlier and will not be repeated here.

To use registers for communication, you must use assembly language. You must
decide ahead of time which specific register will be dedicated for the communication.
The communicating register must not be saved/restored by the exception handler.

In the second example assembly program (ABS brake controller), the program counts
how many times the wheel spins (KEY3 goes from 0 to 1) by incrementing r22. The ISR
inspects r22 to see if it should apply the brakes (frequent spins) or pulse them (infrequent
spinning indicates a locked wheel). When the ISR exits, it resets r22 to 0. This
communication is safe because all instructions that modify r22 behave atomically (the
modifying instruction either completely executes, or is interrupted before executing).

It is also important that we dedicated r22 to the task, and not a register that sometimes has
another purpose. For example, suppose we chose to use r2 – after all, it is often used by
subroutines to return a value. If the main program contains subroutines, they would also
use r2 to return some value. Usually, the subroutine would return the correct value.
However, sometimes the ISR will interrupt the subroutine just before returning; the ISR
resets r2 to 0, causing the subroutine to return the wrong value.

If you communicate using registers (not memory), it is still necessary to protect critical
sections. In the example below, a shared variable is placed in register r22. The main
program has a problem because it reads r22 in one place (the blt instruction) and then
modifies it in another (the addi or movi instructions). Using separate instructions to read
and modify the register is what causes the problem; protect this by disabling interrupts
before the read, and re-enabling interrupts after the modify.
MainBuggy: blt r22, r8, resetR22
 addi r22, r22, 1
 br done
resetR22: movi r22, 0
done: ...

Identifying and protecting critical sections correctly is a difficult task. You will spend a
lot of time on this topic next year in your Operating Systems course (eg, EECE 314 / 315).

References
[1] Nios II Processor Reference Handbook, especially early pages in Chapter 3.
[2] Nios II Software Developer’s Handbook, especially Chapter 8.
[3] Altera DE1 Media Computer manual
You can download [1] and [2] from http://www.altera.com in the Literature section.

L36-3

(revised 3/28/2011)

.include "ubc-de1media-macros.s"

/***
 * RESET SECTION
 * The Nios II assembler/linker places this section at address 0x00000000.
 * It must be <= 8 real NiosII instructions. This is where the CPU starts
 * at "powerup" and on "reset".
 */
.section .reset, "ax"
 movia sp, STACK_END /* initialize stack */
 movia ra, _start
 ret /* jump to _start */

/***
 * EXCEPTIONS SECTION
 * The Nios II assembler/linker places this section at addresss 0x00000020.
 */
.section .exceptions, "ax"

exception_handler:
 addi sp, sp, -12 /* save used regs on stack */
 stw r8, 0(sp)
 stw r9, 4(sp)
 stw ra, 8(sp)

 /* Check if interrupts were enabled by examining the EPIE bit. */
 /* EPIE is bit0 of estatus, a copy of PIE before the exception */
 rdctl et, estatus
 andi et, et, 1
 beq et, r0, check_software_exceptions
 /* interrupts are enabled, check if any are pending */
 rdctl et, ipending
 beq et, r0, check_software_exceptions

check_hardware_interrupts:
 /* upon return, execute the interrupted instruction */
 subi ea, ea, 4
 /* should check interrupts one-at-a-time, from irq0 to irq31 */
 /* each time the ipending bit is set, we should call the proper ISR */
 /* since we are only expecting irq0, we will only check for it */
 andi et, et, 0x01
 beq et, r0, check_next_interrupt

 call timer_isr /* ISR uses r8, r9, and ‘call’ uses ra */

check_next_interrupt:
 /* no more interrupts to check */

check_software_exceptions:
 /* no software exceptions supported */
 /* they should be checked in priority order (trap, break, unimplemented) */

done_exceptions:
 ldw ra, 8(sp) /* restore used regs from stack */
 ldw r9, 4(sp)
 ldw r8, 0(sp)
 addi sp, sp, 12
 eret

/***
 * TEXT SECTION
 * The Nios II assembler/linker should put the .text section after the .exceptions.
 * You may need to configure the Altera Monitor Program to locate it at address 0x400.
 */

.text
.global _start

_start: movia r23, IOBASE
 movia sp, STACK_END /* make sure stack is initialized */

Example: ABS Brake Controller – toggle LEDG0 if KEY3 is infrequent.
ISR and main program communicate using register r22.

(revised 3/28/2011)

 movia r4, brake_flag
 stw r0, 0(r4) /* initially, turn brake OFF */
 movi r22, 0 /* initialize KEY3 counter = 0 */

 movia r4, 100*50000 /* # of timer cycles in 100ms */
 call setup_timer_interrupts
 call setup_cpu_interrupts

loop: stwio r22, LEDR(r23) /* display current KEY3 counter */
 ldwio r16, KEY(r23)
 andi r16, r16, 8 /* KEY3 */
 bne r16, r0, loop /* wait for KEY3 to become 0 */

while0: stwio r22, LEDR(r23) /* display current KEY3 counter */
 ldwio r16, KEY(r23)
 andi r16, r16, 8 /* KEY3 */
 beq r16, r0, while0 /* wait for KEY3 to become 1 */

 /* count the 0-to-1 transition */
 addi r22, r22, 1
 br loop

timer_isr:
 /* every 100ms, adjust brake_flag and display it on LEDG */
 /* clear source of interrupt by writing 0 to TO bit */
 stwio r0, TIMER_STATUS(r23)
 /* process the interrupt */
 movia r8, brake_flag /* read old brake state */
 ldw r9, 0(r8)

 movi r8, 5
 blt r22, r8, brakePULSE /* if KEY3 pressed < 5 times, pulse brake */
brakeON: movi r9, 0 /* turn brake off (invert turns it ON) */
brakePULSE: xori r9, r9, 1 /* invert state of brake to pulse it */

 /* change state of the system */
 movia r8, brake_flag /* remember new brake state */
 stw r9, 0(r8)
 stwio r9, LEDG(r23) /* show current brake signal to LEDG[0] */
 mov r22, r0 /* reset KEY3 counter every second */
 /* return from ISR */
 ret

setup_timer_interrupts:
 /* set up timer to send interrupts */
 /* parameter r4 holds the # cycles for the timer interval */

 /* set the timer period */
 andi r2, r4, 0xffff /* extract low halfword */
 stwio r2, TIMER_START_LOW(r23)
 srli r2, r4, 16 /* extract high halfword */
 stwio r2, TIMER_START_HIGH(r23)

 /* start timer (bit2), count continuously (bit1), enable irq (bit0) */
 movi r2, 0b0111
 stwio r2, TIMER_CONTROL(r23)
 ret

setup_cpu_interrupts:
 /* set up CPU to receive interrupts from timer */
 movi r2, 0x01 /* bit0 = irq0 = countdown timer device */
 wrctl ienable, r2
 movi r2, 1 /* bit0 = PIE */
 wrctl status, r2
 ret
.data
brake_flag:
.word 0
.end

